
The University of New South Wales
School of Mathematics and Statistics

SCIENTIA

MANU E T MENTE

Planar Universal Geometry

Timothy Blair Leslie
<tim.leslie@gmail.com>

Masters of Science and Technology

(Mathematics)

October 2009

Supervisor: A/Prof. Norman J. Wildberger

ii

iii

Abstract

We consider affine universal geometry in the case of a two dimensional vector

space with an arbitrary quadratic form over a general field. A series of the-

orems for lines and conics are presented, which extend previous results from

Euclidean rational trigonometry and chromogeometry. A numerical software

library, pygeom, is also presented. This library uses the results derived here

to allow calculations to be performed.

iv

Contents

1 Introduction 1
1.1 Rational Trigonometry . 1
1.2 Universal Geometry . 2
1.3 Chromogeometry . 2
1.4 Planar Universal Geometry 3
1.5 Overview . 3

2 Planar Universal Geometry 5
2.1 Notation and Definitions . 5
2.2 Properties of Lines . 9
2.3 Properties of Points . 10
2.4 Altitudes . 12

3 Conics 15
3.1 Introduction . 15
3.2 Tangents, Poles and Polars . 16
3.3 General Conics . 19
3.4 Circles . 24
3.5 Parabola . 27
3.6 Grammolas . 29
3.7 Quadrolas . 34

4 Pygeom Library 37
4.1 Overview . 37
4.2 Fields . 38

4.2.1 Field . 38
4.2.2 Rational . 40
4.2.3 FiniteField . 40
4.2.4 Field of Algebraic Expressions 41
4.2.5 Real Numbers . 41
4.2.6 Examples . 42

4.3 Geometries . 43

v

vi CONTENTS

4.3.1 Geometry . 43
4.3.2 Chromogeometry . 43

4.4 Core Objects . 44
4.4.1 Point . 45
4.4.2 Line . 46
4.4.3 Conic . 46

4.5 Paired Objects . 48
4.5.1 LineSegment . 48
4.5.2 Vertex . 49
4.5.3 PointLine . 50

4.6 Examples . 52

5 Testing 55
5.1 Unit Testing . 56
5.2 Fuzz Testing . 56
5.3 Coverage Testing . 57
5.4 pygeom Test Framework . 57

5.4.1 Coverage . 58
5.5 pygeom Test Suite . 59

5.5.1 test field.py . 59
5.5.2 test rational.py . 60
5.5.3 test core.py . 60
5.5.4 test conic.py . 60
5.5.5 test pairs.py . 60

5.6 Summary . 61

6 Conclusion 63

List of Figures

4.1 The Field class interface. 39
4.2 The Geometry class interface. 44
4.3 The Point class interface. 45
4.4 The Line class interface. 46
4.5 The Conic class interface. 47
4.6 The LineSegment class interface. 49
4.7 The Vertex class interface. 50
4.8 The PointLine class interface. 51

vii

viii LIST OF FIGURES

Chapter 1

Introduction

1.1 Rational Trigonometry

Classical trigonometry, as generally taught to students in high school, defines

distances in terms of square roots and angles in terms of the transcendental

trigonometric functions. While these ideas have found many applications,

both theoretical and practical, they have a number of drawbacks as well.

In particular, the need to calculate square roots and trigonometric functions

makes it impossible to get exact numerical answers in all but the most trivial

of cases.

Rational trigonometry [1] addresses these issues by replacing the notion of

distance with that of quadrance and the idea of angles with that of spread.

Quadrance is just the square of the distance while the spread between two lines

with an angle θ is equal to sin2 θ. By working with these new quantities, it is

possible to develop many geometrical theorems in purely algebraic terms. This

means that all calculations can be made exactly, overcoming this particular

drawback of classical geometry.

Although the spread is equivalent to sin2 θ, it can be defined algebraically

without reference to the trigonometric functions. This allows trigonometry

to be developed without having to first develop a theory of circular functions

(i.e. sin, cos, etc). It can be argued that this makes teaching and learning

trigonometry simpler, as the theory of triangles is kept separate from the

theory of circles [2].

It has been found that rational trigonometry provides a powerful set of theo-

1

2 CHAPTER 1. INTRODUCTION

rems1. While some of these theorems, such as the triple quad formula [1] have

no direct classical analogue, many of the theorems of classical geometry, such

as Heron’s formula and Pythagoras’ theorem, can be derived from rational

trigonometry [3].

1.2 Universal Geometry

The ideas of rational trigonometry can be extended from the two dimen-

sional, Euclidean form to a completely general form which works over an

n-dimensional vector space with a metric defined by a symmetric bilinear

form [4]. This universal geometry allows results to be obtained in a general

setting. By considering specific bilinear forms one can recover results for both

Euclidean and hyperbolic geometry.

The spread between two lines and the quadrance between two points in univer-

sal geometry is defined in terms of the bilinear form. As such all constructions

can be done in terms of this single object. From this simple foundation many

interesting ideas can be recovered, including many results of Euclidean geom-

etry. While some work has been done to develop results in this area [5], there

remains a broad scope for further investigations.

1.3 Chromogeometry

One particular area of universal geometry which has been developed is chro-

mogeometry [6]. In chromogeometry we consider the case of a two dimensional

vector space over a general field. We then take the three different quadratic

forms Gb =

(

1 0

0 1

)

, Gr =

(

1 0

0 −1

)

and Gg =

(

0 1

1 0

)

and get the three ge-

ometries known as the blue, red and green geometries respectively. The blue

geometry corresponds to the usual Euclidean geometry while the red and the

green are both hyperbolic geometries.

Chromogeometry investigates the three-fold symmetries which exist between

geometrical objects in each of these geometries. For example, given a parabola,

the focus and directrix will be different in each of the different geometries.

An interesting result arises in that the directrices from the red and green

1For a series of video tutorials on Rational Trigonometry see the “WildTrig” series at

http://www.youtube.com/view play list?p=3C58498718451C47&search query=wildtrig

1.4. PLANAR UNIVERSAL GEOMETRY 3

geometries intersect at the blue focus, the red and blue directrices intersect at

the green focus and the blue and green directrices intersect at the red focus [7].

1.4 Planar Universal Geometry

Planar Universal Geometry studies the specific case of universal geometry in

a two dimensional plane. This contains the geometries of chromogeometry as

a special case, but does not extend to the arbitrary dimensionality of universal

geometry. Planar universal geometry has not been systematically studied in

detail previously, and so this thesis aims to address this.

Theories developed in this area may serve a number of purposes. Firstly, they

will be useful in their own right in making numerical calculations and further

developing the field. Secondly they may provide insight into the results which

can be expected in the case of n-dimensional universal geometry. Finally,

by developing theories in the case of an arbitrary quadratic form, one gets

Euclidean geometry and chromogeometry as a special case. This removes the

need to prove individual results from first principles in these cases.

1.5 Overview

This thesis comprises of two main sections. In the first, a set of theorems in

planar universal geometry are proven. In the second, a software library for

doing numerical calculations in planar universal geometry is presented. This

software package implements many of the theorems proved in the first section,

providing a practical tool to assist in further investigations in the field.

In Chapter 2 we introduce the idea of a geometry with a metric defined by

a quadratic form, and develop some results for points and lines in such a

geometry. Chapter 3 builds on this, developing a set of theories relating to

conics in planar universal geometry. In Chapter 4 a new software library,

pygeom, is presented. Chapter 5 discusses the test framework which comes

with pygeom and ensures that it produces correct results in a robust manner.

The source code of the pygeom library is attached as a separate appendix. A

soft copy of the code is available from the author upon request.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Planar Universal Geometry

We begin by developing some results about points and lines in the plane when

taken with an arbitrary quadratic form as the metric. Some of the results

presented below are well known results from Euclidean geometry while others

are completely novel. Those non-original results are included for completeness,

so that the reader may have a comprehensive set of results presented in a

consistent notation. Many of the definitions make reference to a general field

F. We will take as given that this field is not of characteristic two, as otherwise

many of the definitions would break down.

2.1 Notation and Definitions

Definition 1. Given a field F, a point is any element X ∈ F×F and we write

X = [x, y] where x, y ∈ F.

An alternative representation of a point is as a two element column vector.

The vector representation allows us to use standard linear algebra notation

when doing calculations.

Definition 2. The vector representation of a point X is

~X =

(

x

y

)

. (2.1)

Definition 3. Given a field F, a line is the locus of points [x, y] ∈ F×F which

satisfy the equation

ax + by + c = 0, (2.2)

5

6 CHAPTER 2. PLANAR UNIVERSAL GEOMETRY

where a, b, c ∈ F and a, b are not both zero. The standard representation of

this line is 〈a : b : c〉, which emphasises the fact that what is important is the

ratio between the values of a, b and c. The lines 〈a : b : c〉 and 〈λa : λb : λc〉,
where λ ∈ F is non-zero, are equivalent, as they represent the same locus of

points.

We can also represent a line as a two element column vector. This represen-

tation does not completely specify the line and so more care must be taken

with its use.

Definition 4. The vector representation of a line l is

~l =

(

−b

a

)

. (2.3)

We also note here that the forms 〈a :b :c〉 and 〈λa :λb :λc〉 represent the same

line, yet have different vector representations. As such when using the vector

representation of a line we must be careful not to use the scaling properties

of the standard representation, as this will lead to inconsistencies.

To perform any kind of geometrical measurement, we require a way to define

the quantities being measured. By changing the way quantities are measured,

we can change the properties of the geometry itself. In planar universal geom-

etry measurement is done in terms of a quadratic form, known as the metric.

Definition 5. Given a field F, a metric G is a symmetric, non-singular two-

by-two matrix over the field, i.e.

G =

(

a b

b c

)

(2.4)

∆G = ac − b2

6= 0 (2.5)

where a, b, c ∈ F.

To make reading the following proofs simpler, a standard naming convention

has been adopted for points, lines and metrics. A points will be denoted as

Xn, and it is assumed that its components are [xn, yn]. A line will be denoted

as ln, and it is assumed that its general form is 〈an : bn : cn〉. The metric G

will always be assumed to be

(

a b

b c

)

. Unless otherwise specified it can be

assumed that this convention is being followed.

2.1. NOTATION AND DEFINITIONS 7

We will often associate a geometry with its metric, and thus the phrases “a

geometry with a metric G” and “a geometry G” will be used interchangeably.

Planar universal geometry allows many of the ideas of Euclidean geometry to

be generalised. The dot product is one such operation.

Definition 6. The metric dot product in a geometry with metric G is defined

as

~v ·G ~u = ~vT G~u (2.6)

where ~v and ~u are vectors which may represent either lines or points.

The definition of a metric dot product leads naturally to the idea of a metric

norm.

Definition 7. The metric norm of a vector ~q in a geometry with metric G is

defined as

‖~q‖G = ~qT G~q. (2.7)

It will often be clear from the context that the metric dot product or metric

norm is being used, in which case the G subscript will be dropped to ease

readability.

Definition 8. A line l is a null line in the geometry G if the norm of the

vector representation of the line is zero, i.e. ‖~l‖G = 0.

Definition 9. A point X is a null point in the geometry G if the norm of the

vector representation of the point is zero, i.e. ‖ ~X‖G = 0.

In standard Euclidean geometry, the separation of any two points is given

in terms of distance, which is calculated using a metric function such as

d(X0, X1) =

√

‖ ~X1 − ~X0‖. Since we wish to use only field operations, we

replace the concept of distance with that of quadrance.

Definition 10. The quadrance between two points X0 and X1 in a geometry

with metric G is defined as

Q(X0, X1)G =
∥

∥

∥

~X0 − ~X1

∥

∥

∥

G
. (2.8)

As is the case with distance, the standard measure of separation of lines, the

angle between them, cannot be defined in terms of field operations. We replace

the notion of angle with that of spread.

8 CHAPTER 2. PLANAR UNIVERSAL GEOMETRY

Definition 11. The spread between two non-null lines l1 and l2 in a geometry

with metric G is defined as

s = 1 −

(

~l1 ·G ~l2

)2

‖~l1‖G‖~l2‖G

. (2.9)

If either l1 or l2 are null lines then the spread between these lines is not defined.

The definition above is essentially identical to that for spread in universal

geometry. We can use the fact that we are working in two dimensions to

simplify this further.

Theorem 1. The spread between the non-null lines l1 = 〈a1 : b1 : c1〉 and

l2 = 〈a2 :b2 :c2〉 in a geometry G is

s = ∆G
(a1b2 − a2b1)

2

‖~l1‖‖~l2‖
. (2.10)

Proof. We first evaluate the denominator in the spread formula to get

‖~l1‖‖~l2‖ = (ab2
1 − 2ba1b1 + ca2

1)(ab2
2 − 2ba2b2 + ca2

2)

= a2b2
1b

2
2 + 4b2a1a2b1b2 + c2a2

1a
2
2 − 2abb1b2(b1a2 + a1b2) +

ac(a2
2b

2
1 + a2

1b
2
2) − 2bca1a2(a2b1 + a1b2).

Now, the numerator is
(

~l1 · ~l2
)2

= (b1(ab2 − ba2) − a1(bb2 − ca2))
2

= (ab1b2 − b(a1b2 + a2b1) + ca1a2)
2

= a2b2
1b

2
2 + b2(a1b2 + a2b1)

2 + c2a2
1a

2
2 − 2abb1b2(a1b2 + a2b1) +

2aca1a2b1b2 − 2bca1a2(a1b2 + a2b1).

Using the result found for the denominator we can write this as
(

~l1 · ~l2
)2

= ‖~l1‖‖~l2‖ + b2(a1b2 + a2b1)
2 + 2aca1a2b1b2 − 4b2a1a2b1b2 −

ac(a2
1b

2
2 + a2

2b
2
1)

= ‖~l1‖‖~l2‖ + (b2 − ac)(a1b2 − a2b1)
2

= ‖~l1‖‖~l2‖ − ∆G(a1b2 − a2b1)
2.

The spread formula now becomes

s = 1 − ‖~l1‖‖~l2‖ − ∆G(a1b2 − a2b1)
2

‖~l1‖‖~l2‖

= ∆G
(a1b2 − a2b1)

2

‖~l1‖‖~l2‖
.

2.2. PROPERTIES OF LINES 9

Definition 12 (Archimedes function). The function A : F×F×F → F defined

as

a, b, c 7→ (a + b + c)2 − 2(a2 + b2 + c2) (2.11)

is called Archimedes function [1].

2.2 Properties of Lines

Many of the properties of lines in rational trigonometry extend naturally to

planar universal geometry. In the following definitions we do not use the

metric of the geometry explicitly and so equivalent results can be found in the

study of rational trigonometry [1].

Definition 13. Two lines are perpendicular when the spread between them

is equal to one.

Corollary 2. If two lines are perpendicular then their metric dot product is

zero.

Proof. This follows directly from the definition of the spread between two

lines.

Definition 14. Two lines l1 and l2 are parallel if a1b2 − a2b1 = 0.

Corollary 3. Two non-null lines l1 and l2 are parallel if and only if the spread

between them is zero.

Proof. This follows directly from Theorem 1.

Definition 15. A point of intersection of two lines is a point which lies on

both lines.

Theorem 4. If two lines l1 and l2 are not parallel then they intersect at the

point X =
[

b1c2−b2c1
a1b2−a2b1

, a2c1−a1c2
a1b2−a2b1

]

.

Proof. We need to solve the following two equations for x and y:

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0.

10 CHAPTER 2. PLANAR UNIVERSAL GEOMETRY

Writing these in matrix form we get
(

a1 b1

a2 b2

)(

x

y

)

= −
(

c1

c2

)

(

x

y

)

= −
(

a1 b1

a2 b2

)−1(
c1

c2

)

=
−1

a1b2 − a2b1

(

b2 −b1

−a2 a1

)(

c1

c2

)

Definition 16. Given a point X0 and a line l1, the residue of the point with

respect to the line is

l1(X0) = a1x0 + b1y0 + c1. (2.12)

Corollary 5. If the point X lies on the line l then l(X) = 0.

Proof. This is an immediate consequence of the definition of a line as the locus

of points satisfying the equation ax + by + c = 0.

2.3 Properties of Points

Given two distinct points, the line which passes through them is defined in-

dependently of the geometry. As such the first theorem regarding points is a

well known result of Euclidean geometry.

Theorem 6. The line which passes through the points X0 and X1 is 〈a1 :b1 :c1〉
where

a1 = y1 − y0 (2.13)

b1 = x0 − x1 (2.14)

c1 = x1y0 − x0y1. (2.15)

Proof. If we assume the line has the form given above and then take the

residues of X0 and X1 we get

l1(X0) = (y1 − y0)x0 + (x0 − x1)y0 + (x1y0 − x0y1)

= 0

l1(X1) = (y1 − y0)x1 + (x0 − x1)y1 + (x1y0 − x0y1)

= 0.

2.3. PROPERTIES OF POINTS 11

Since the residue of both points is zero they both lie on the line, as required.

The quadrance between two points is defined in terms of the metric of the

geometry. As such we expect that the set of points which are equiquadrance

from two given points to depend on the metric. As is the case with Euclidean

geometry, this set of points turns out to always be a line.

Definition 17. The equiquadrance line in a geometry G between two points

X0 and X1 is the locus of points such that Q(X, X0) = Q(X, X1).

Theorem 7. Given two points X0, X1 in a geometry G, the equation of the

equiquadrance line is 〈a1 :b1 :c1〉 where
(

a1

b1

)

= 2G(~X0 − ~X1) (2.16)

c1 = ~X1

2 − ~X0

2
. (2.17)

Proof. From the definition we have

Q(X, X0) = Q(X, X1)

~X0

2 − 2 ~X0 · ~X + ~X2 = ~X1

2 − 2 ~X1 · ~X + ~X2

2(~X0 − ~X1) · ~X + ~X1

2 − ~X0

2
= 0.

We can now obtain a result which is inspired by Euclidean geometry. In

Euclidean geometry, the points on the perpendicular bisector of two points

are equidistant from the two points. In planar universal geometry we have

the following generalised version of this theorem.

Theorem 8. Given two points X0 and X1, the equiquadrance line is perpen-

dicular to the line between the two points.

Proof. If l1 is the line through X0 and X1, and l2 is their perpendicular bisector

then the metric dot product of the two lines is

~l1 · ~l2 =

(

−b2

a2

)(

a b

b c

)(

−b1

a1

)

= 2

(

−(b(x0 − x1) + c(y0 − y1))

a(x0 − x1) + b(y0 − y1)

)(

a b

b c

)(

x1 − x0

y1 − y0

)

= 2

(

−(b(x0 − x1) + c(y0 − y1))

a(x0 − x1) + b(y0 − y1)

)(

a(x1 − x0) + b(y1 − y0)

b(x1 − x0) + c(y1 − y0)

)

= 0.

12 CHAPTER 2. PLANAR UNIVERSAL GEOMETRY

Since their dot product is zero, the lines are perpendicular.

2.4 Altitudes

Another idea we can borrow from Euclidean geometry is that of an altitude.

Definition 18. In a geometry with metric G, given a point X0 and a line l1,

an altitude is a line which passes through X0 and is perpendicular to l1 with

respect to the metric.

While the definition of an altitude in planar universal geometry is equivalent

to that in Euclidean geometry, the equation of the altitude line and its foot

depend on the metric.

Theorem 9. Given a point X0 and a line l1 in a geometry with metric G, the

altitude la has the form 〈ba1 − ab1 :ca1 − bb1 : (ab1 − ba1)x0 + (bb1 − ca1)y0〉.

Proof. We require l1 and la to be perpendicular, which means we must have
~l1 ·G ~la = 0. This leads to the equation

−(ba1 − ab1)ba + (ca1 − bb1)aa = 0.

A solution to this equation is ~la = (bb1−ca1, ba1−ab1)
T , giving la = 〈ba1−ab1 :

ca1 − bb1:ca〉. We require the altitude la to pass through X0 and so

la(X0) = 0

(ba1 − ab1)x0 + (ca1 − bb1)y0 + c1 = 0

c1 = (ab1 − ba1)x0 + (bb1 − ca1)y0.

Definition 19. In a geometry with metric G, given a line, a point and the

altitude from the point to the line, the altitude foot is defined as the point

where the altitude intersects the line.

Theorem 10. Given a point X0 and a line l1 in a geometry with metric G,

the foot of the altitude is F = [xF , yF] where

Fx = −b1x0(ba1 − ab1) + (ca1 − bb1)(c1 + b1y0)

‖~l1‖
(2.18)

Fy =
a1y0(ca1 − bb1) + (ba1 − ab1)(c1 + a1x0)

‖~l1‖
. (2.19)

2.4. ALTITUDES 13

Proof. For a given l1 and X0, we wish to find the foot of the altitude, F =

[xF , yF], which is the point where l1 intersects the altitude la. From Theorem

4, which gives the intersection of two lines, we find that

Fx =
b1ca − bac1

a1ba − aab1

=
−b1((ba1 − ab1)x0 + (ca1 − bb1)y0) − (ca1 − bb1)c1

a1(ca1 − bb1) − (ba1 − ab1)b1

=
−b1x0(ba1 − ab1) − (ca1 − bb1)(c1 + b1y0)

‖~l1‖
Fy =

aac1 − a1ca

a1ba − aab1

=
c1(ba1 − ab1) − a1((ab1 − ba1)x0 + (bb1 − ca1)y0)

‖~l1‖

=
(ba1 − ab1)(c1 + a1x0) + (ca1 − bb1)a1y0

‖~l1‖
.

While the equation for the foot of the altitude is reasonably complex, the

quadrance between the foot and the original point is relatively simple.

Definition 20. The point-line quadrance between a point and a line is defined

as the quadrance between the point and the foot of the altitude formed with

the line.

Theorem 11. Given a point X0 and a line l1 in a geometry with metric G,

the point-line quadrance is

Q(X0, l1) =
l1(X0)

2

‖~l1‖
∆G. (2.20)

Proof. If X0 = [x0, y0] and the foot of the altitude is F = [xF , yF] then from

the definition we have

Q(X0, l1) = Q(X0, F)

= a(xF − x0)
2 + 2b(xF − x0)(yF − y0) + c(yF − y0)

2. (2.21)

14 CHAPTER 2. PLANAR UNIVERSAL GEOMETRY

From Theorem 10 we have

xF − x0 =
−b1x0(ba1 − ab1) − (ca1 − bb1)(c1 + b1y0) − (ab2

1 − 2ba1b1 + ca2
1)x0

ab2
1 − 2ba1b1 + ca2

1

=
ba1b1x0 − (ca1 − bb1)(c1 + b1y0) − ca2

1x0

‖~l1‖

=
(bb1 − ca1)(a1x0 + b1y0 + c1)

‖~l1‖

=
l1(X0)

‖~l1‖
(bb1 − ca1)

yF − y0 =
(ba1 − ab1)(c1 + a1x0) + (ca1 − bb1)a1y0 − (ab2

1 − 2ba1b1 + ca2
1)y0

ab2
1 − 2ba1b1 + ca2

1

=
(ba1 − ab1)(c1 + a1x0) + ba1b1y0 − ab2

1y0

‖~l1‖

=
(ba1 − ab1)(a1x0 + b1y0 + c1)

‖~l1‖

=
l1(X0)

‖~l1‖
(ba1 − ab1).

Combining these expressions with equation 2.21 we finally find

Q(X0, l1) =

(

l1(X0)

‖~l1‖

)2
(

a(bb1 − ca1)
2 + 2b(bb1 − ca1)(ba1 − ab1) + c(ba1 − ab1)

2
)

=

(

l1(X0)

‖~l1‖

)2
(

(ac2 − b2c)a2
1 − 2(abc − b3)a1b1 + (a2c − ab2)b2

1

)

=

(

l1(X0)

‖~l1‖

)2

(ac − b2)(ca2
1 − 2ba1b1 + ab2

1)

=
l1(X0)

2

‖~l1‖
∆G. (2.22)

The results in this chapter show how ideas from Euclidean geometry can be

expressed in planar universal geometry. In the following chapter we will use

these ideas to build up a theory of conics.

Chapter 3

Conics

3.1 Introduction

Having developed a set of theorems for points and lines, the next most complex

geometrical objects to consider are conics. In this chapter we will present

the core theory of conics in planar universal geometry, drawing inspiration

from previous work done on conics in chromogeometry [7]. Throughout this

chapter we assume that all values used are taken from a given field F not of

characteristic two.

We begin by establishing some basic definitions and notation.

Definition 21. Given numbers A, B, C, D, E, F , a conic is defined as the

locus of points [x, y] such that Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

We note that a conic is defined independently of any geometry. When asso-

ciated with a particular geometry, a conic may take on particular interesting

properties, which will be discussed below.

To assist in working with conics we introduce two notations for their repre-

sentation.

Definition 22. The conic which satisfies Ax2 +Bxy+Cy2+Dx+Ey+F = 0

is represented by the notations 〈A :B :C :D :E :F 〉 or 〈P :~q :r〉 where

P =

(

A B/2

B/2 C

)

~q =

(

D

E

)

r = F.

15

16 CHAPTER 3. CONICS

Throughout this chapter we will use the convention that the conic 〈P : ~q : r〉
corresponds to 〈A :B :C :D :E :F 〉 without explicitly stating this relation.

Definition 23. Two conics, 〈P : ~q : r〉 and 〈P ′ : ~q′ : r′〉 are defined to be

equivalent if

P = λP ′ (3.1)

~q = λ~q′ (3.2)

r = λr′ (3.3)

for some λ 6= 0.

We also introduce a function M : F × F → M2(F) defined by

M(a, b) 7→
(

a2 ab

ab b2

)

. (3.4)

This function arises naturally in a number of places and has some useful

properties.

• det(M(a, b)) = 0.

• M(a, b) = 0 iff a = b = 0.

• If exactly one of a and b are zero then M(a, b) has one non-zero entry.

• If both a and b are non-zero then M(a, b) has no zero entries.

3.2 Tangents, Poles and Polars

Tangents, while being a geometrical construct, are often considered in the

study of analysis, where they are defined in terms of infinitesimal limits. As

has been shown for Euclidean geometry, it is possible to define tangents to

conics in a purely algebraic manner [1]. Indeed the definition of a tangent

does not depend on a metric, and so the results below serve to express results

known from Euclidean geometry in the notation of this thesis.

Definition 24. A line is a tangent to a conic if it intersects that conic at

exactly one point.

3.2. TANGENTS, POLES AND POLARS 17

Theorem 12 (Tangent condition). The line 〈a : b : c〉 is tangent to the conic

〈P :~q :r〉 if and only if

(Bc + Db + Ea)2 − 4(ACc2 + AFb2 + CFa2)+

4 ((AE − BD)bc + (CD − BE)ac + (BF − DE)ab) = 0. (3.5)

Proof. If the line is a tangent then we need to solve the simultaneous equations

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

ax + by + c = 0

to find the unique point X = [x, y]. From the equation of the line we get

x = − c+by
a

, which, when substituted into the conic equation, gives

0 = A

(

c + by

a

)2

− B

(

c + by

a

)

y + Cy2 − D

(

c + by

a

)

+ Ey + F

= A(c + by)2 − Ba(c + by)y + Ca2y2 − Da(c + by) + Ea2y + Fa2

= (Ab2 − Bab + Ca2)y2 + (2Abc − Bac − Dab + Ea2)y + (Ac2 − Dac + Fa2).

This equation is quadratic in y, so for there to be a unique solution we re-

quire the determinant in the quadratic equation to be zero. This leads to the

condition

(2Abc − Bac − Dab + Ea2)2 = 4(Ab2 − Bab + Ca2)(Ac2 − Dac + Fa2).

Algebraic manipulation (omitted here for brevity) leads to the desired result.

Theorem 13 (Tangent through a point). Given a point X0 which lies on the

conic 〈P :~q :r〉, the tangent to the conic through the point is 〈a :b :c〉 where

(

a

b

)

= ~q + 2P ~X0 (3.6)

c = ~q · ~X0 + 2r. (3.7)

Proof. The relations above can be shown to satisfy equation (3.5). The alge-

braic manipulations required to verify this are best attempted in a computer

algebra system since they result in up to 48 terms and as such are omitted

here.

Another metric-free notion which we can borrow from Euclidean geometry is

that of poles and polars.

18 CHAPTER 3. CONICS

Definition 25. Given a point X0 and a conic 〈P : ~q : r〉, we can generally

construct two tangents to the conic which pass through X0. If we denote the

points where these tangents meet the conic as X1 and X2 then the line which

passes through X1 and X2 is defined as the polar of the point X0, the pole.

Theorem 14 (Polar from pole). Given a point X0 and a conic 〈P :~q :r〉, the

polar of the pole X0, with respect to the conic, is 〈a :b :c〉 where
(

a

b

)

= ~q + 2P ~X0 (3.8)

c = ~q · ~X0 + 2r. (3.9)

Proof. From Theorem 13 we know that the tangent line which passes through

through X0 (the pole) and X1, the tangent point on the conic, must satisfy

the equation

(~q + 2P ~X1) · ~X0 + ~q · ~X1 + 2r = 0.

Likewise, the tangent through X2 and X0 gives

(~q + 2P ~X2) · ~X0 + ~q · ~X2 + 2r = 0.

Adding these two equations we get

2~q · ~X0 + 2(~X1 + ~X2)P ~X0 + ~q · (~X1 + ~X2) + 4r = 0

(~q + 2P ~X0) · (~X1 + ~X2) + 2(~q · ~X0 + 2r) = 0.

As such the line which passes through X1 and X2 is

(~q + 2P ~X0) · ~X + ~q · ~X0 + 2r = 0.

Corollary 15. The tangent through a point on a conic is also the polar of

that point.

Proof. This follows directly from the equations in Theorems 13 and 14.

Theorem 16 (Pole from polar). Given a conic 〈P :~q :r〉 and a polar 〈a :b :c〉,
the corresponding pole is

~X0 =
1

2
P−1

(

λa − D

λb − E

)

(3.10)

where

λ =
D(CD − BE/2) + E(AE − BD/2) − 4∆P F

D(Ca − Bb/2) + E(Ab − Aa/2) − 2∆P c
. (3.11)

3.3. GENERAL CONICS 19

Proof. Equation (3.8) gives the vector form of the polar, up to a scale factor.

Rearranging this equation we get

~X0 =
P−1

2

(

λ

(

a

b

)

− ~q

)

=
1

2∆P

(

C −B/2

−B/2 A

)(

λa − D

λb − E

)

.

We can find the scale factor λ by combining this result with equation (3.9) to

give

λc = ~q · ~X0 + 2r

=
1

2∆P

D (C(λa − D) − B(λb − E)/2) +

1

2∆P
E(−B(λa − D)/2 + A(λb − E)) + 2F

λ =
1

2∆P
(D(CD − BE/2) + E(AE − BD/2) − 2F
1

2∆P
(D(Ca− Bb/2) + E(Ab − Aa/2)) − c

=
D(CD − BE/2) + E(AE − BD/2) − 4∆PF

D(Ca − Bb/2) + E(Ab − Aa/2) − 2∆P c
.

3.3 General Conics

Having established a notation and some metric-free results about conics, we

now look at ways of constructing conics based on structures such as points

and lines. These constructions will depend intrinsically on the metric of the

geometry. The results found here will generalise certain definitions and results

known from chromogeometry. We begin with the most general construction.

Definition 26. Given a point X0 and a line l1 a general conic is defined as the

locus of points which have a constant ratio of quadrance to X0 and quadrance

to l1. The ratio, K, cannot be zero. The point X0 is called the focus and the

line l1 is the directrix.

The points on the conic satisfy the equation

Q(X, X0) = KQ(X, l1). (3.12)

20 CHAPTER 3. CONICS

Theorem 17 (General form of a conic). The general form of a conic with

focus X0, directrix l1 and constant K is 〈P :~q :r〉 where

P = G − KαM(a1, b1) (3.13)

~q = −2

(

G ~X0 + c1Kα

(

a1

b1

))

(3.14)

r = ~X0

2 − Kαc2
1 (3.15)

and α = ∆G/‖~l1‖.

Proof. Expanding equation (3.12) we get

Q(X, X0) = KQ(X, l1)

~X · ~X − 2 ~X · ~X0 + ~X0

2
= K

l1(X)2

‖~l1‖
∆G

= Kαl1(X)2

= Kα(a1x + b1y + c1)
2

= Kα((a2
1x

2 + 2a1b1xy + b2
1y

2) + 2c1(a1x + b1y) + c2
1).

The quadratic term P in any conic can tell us a lot about the nature of the

conic, as we see here and below when we consider circles and parabolas.

Lemma 18. A general conic 〈P :~q :r〉 satisfies P 6= G.

Proof. If P = G then from (3.13) we require KαM(a1, b1) = 0 for some

l1 = 〈a1 : b1 : c1〉. From the definition of a line we must have either a1 6= 0

or b1 6= 0 so we require either K = 0 or α = 0. We know that α 6= 0 since

∆G 6= 0. We also know that K 6= 0 by definition and therefore P 6= G.

Lemma 19. A general conic 〈P :~q :r〉 satisfies G 6= λP for λ 6= 0.

Proof. Assume that G = λP . From Lemma 18 we can take λ 6= 1. From

equation (3.13) we have

P = G − KαM(a1, b1)
(

1 − 1

λ

)

G = KαM(a1, b1).

3.3. GENERAL CONICS 21

Taking the determinant of each side we get
(

1 − 1

λ

)

∆G = Kα det(M(a1, b1))

= 0

which is a contradiction, since by definition ∆G 6= 0.

Some theorems below will require that the matrix G − P , for some conic

〈P : ~q : r〉 in a geometry G, has no zero entries. Pre-empting this, we present

the following two results.

Lemma 20. For a general conic 〈P :~q :r〉 the matrix G − P has either 1 or 4

non-zero entries.

Proof. Since G−P = KαM(a1, b1) and at least one of a1, b1 are non-zero the

result follows directly from the properties of the function M .

Lemma 21. For a general conic 〈P :~q :r〉, if the matrix G−P has 1 non-zero

entry, there exists an equivalent conic 〈P ′ : ~q′ : r′〉 such that G − P ′ has 4

non-zero entries.

Proof. If we pick λ /∈ {0, c/C, a/A} and let P ′ = λP then

G − P ′ =

(

a − λA b − λB/2

b − λB/2 c − λC

)

.

From our choice of λ we know that a− λA 6= 0 and c− λC 6= 0, which means

G − P ′ has at least two non-zero entries. Since G − P ′ must have either one

or four non-zero entries, it must have four non-zero entries.

Having found a way to construct conics from a focus and a directrix, we

would like to be able to, given a conic, recover the focus and directrix used to

construct it. The remainder of this section addresses this problem.

Definition 27. If l1 is a directrix of a conic then ~l1 is a directrix vector of the

conic.

Theorem 22 (Direction of directrices). The conic 〈P : ~q : r〉 has directrix

vectors ~l1 =

(

−b1

a1

)

and ~l2 =

(

−b2

a2

)

where

(

a1 a2

b1 b2

)

= G − P (3.16)

= KαM(a1, b1). (3.17)

22 CHAPTER 3. CONICS

Proof. We wish to solve equation (3.13) for a1 and b1. Without loss of gener-

ality we can assume that G − P has no zero entries, which means that a1 are

b1 are both non-zero. This lets us find an expression for Kα by considering

the off-diagonal elements of our matrix equation.

P = G − KαM(a1, b1)
(

a − A b − B/2

b − B/2 c − C

)

= Kα

(

a2
1 a1b1

a1b1 b2
1

)

Kα =
b − B/2

a1b1
. (3.18)

We can now use this value to equate the diagonal elements of the matrices

above, giving

a1(b − B/2) = b1(a − A)

b1(b − B/2) = a1(c − C).

There are two possible solutions to these equations. a1 = a−A, b1 = b−B/2

or a1 = b−B/2, b1 = c−C. Putting these results into matrix form gives the

desired result.

Lemma 23. The two directrix vectors of a conic are parallel.

Proof. Since G − P = KαM(a1, b1) and det(M(a1, b1)) = 0, we must have
∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

= a1b2−a2b1 = 0 and therefore the directrix vectors are parallel.

Although we have not yet found the focus and directrix, we are now in a

position to determine the constant K.

Theorem 24 (Constant of focus/directrix pairs). The constant K associated

with the focus/directrix pairs of 〈P :~q :r〉 is

K =
a(b − B/2)2 − 2b(a − A)(b − B/2) + c(a − A)2

(a − A)∆G
. (3.19)

Proof. From Theorem 22 and equation (3.18) we get

K =
b − B/2

αa1b1

=
b − B/2

α(a − A)(b − B/2)

=
‖~l1‖

α(a − A)∆G

=
a(b − B/2)2 − 2b(a − A)(b − B/2) + c(a − A)2

(a − A)∆G
.

3.3. GENERAL CONICS 23

We have shown that the two directrix vectors are parallel, so in actual fact

we only have a single direction for our directrices. Although in Euclidean

geometry we expect a conic to have two focus and directrix pairs, to prove

this in planar universal geometry we need the following result.

Theorem 25. Given a conic 〈P : ~q : r〉 with directrix vector ~l1 and constant

K, its two directrices are l1 = 〈a1 :b1 :c11〉 and l2 = 〈a1 :b1 :c12〉 where c11 and

c12 are the roots of the equation

0 = 4Kα(‖~l1‖Kα − ∆G)c2
1 + 4Kα(~Q · ~l1)c1 + (~Q · ~Q − 4∆GF) (3.20)

where

~Q =

(

−E

D

)

(3.21)

α =
∆G

‖~l1‖
. (3.22)

Proof. We need to solve equations (3.14) and (3.15) for c1. We begin by

finding an expression for X0.

~q = −2

(

G ~X0 + c1Kα

(

a1

b1

))

2G ~X0 = −~q − 2c1Kα

(

a1

b1

)

2 ~X0 = −G−1

(

~q + 2c1Kα

(

a1

b1

))

. (3.23)

We need to find ~X0

2
so we take the metric dot product of each side of the

above equation with itself and obtain

(2 ~X0)
T (2G ~X0) =

(

G−1

(

~q + 2c1Kα

(

a1

b1

)))T (

~q + 2c1Kα

(

a1

b1

))

4 ~X0

2
=

1

∆G

(

c(D + 2a1c1Kα) − b(E + 2b1c1Kα)

−b(D + 2a1c1Kα) + a(E + 2b1c1Kα)

)(

D + 2a1c1Kα

E + 2b1c1Kα

)

4∆G
~X0

2
= c(D + 2a1c1Kα)2 − 2b(D + 2a1c1Kα)(E + 2b1c1Kα) +

a(E + 2b1c1Kα)2.

24 CHAPTER 3. CONICS

We are now able to solve equation (3.15) in terms of c1.

r = ~X0

2 − Kαc2
1

4∆G(F + c2
1Kα) = c(D + 2a1c1Kα)2 − 2b(D + 2a1c1Kα)(E + 2b1c1Kα) +

a(E + 2b1c1Kα)2

0 = (4ca2
1K

2α2 − 8ba1b1K
2α2 + 4ab1K

2α2 − 4∆GKα)c2
1

+(4cDa1Kα − 2b(2Db1Kα + 2Ea1Kα) + 4aEb1Kα)c1

+(cD2 − 2bDE + aE2 − 4∆GF)

= 4Kα(‖~l1‖Kα − ∆G)c2
1 + 4Kα(~Q · ~l1)c1 + (~Q · ~Q − 4∆GF).

Having found that there are indeed two directrices, finding their associated

foci is relatively simple.

Theorem 26 (Focus of a directrix). Given a conic 〈P : ~q : r〉 with directrix

l1 = 〈a1 :b1 :c1〉 and constant K, the associated focus is

~X0 = −1

2
G−1

(

~q + 2c1Kα

(

a1

b1

))

. (3.24)

Proof. This result follows directly from (3.23).

3.4 Circles

In the construction of conics from focus and directrix we found that we were

unable to construct conics such that G = λP . We now investigate another way

of constructing conics which complements the focus/directrix construction.

Definition 28. Given a geometry, G, a circle is defined as the locus of points

which are quadrance K from a fixed point X0, i.e. those points which satisfy

Q(X, X0) = K. (3.25)

The point X0 is the centre of the circle and K is its quadrance.

Theorem 27 (General form of a circle). The general form of a circle with

radius K and centre X0 is 〈P :~q :r〉 where

P = G (3.26)

~q = −2G ~X0 (3.27)

r = ~X0

2 − K. (3.28)

3.4. CIRCLES 25

Proof. Expanding (3.25) we get

Q(X, X0) = K

(~X − ~X0) · (~X − ~X0) = K

~X · ~X − 2 ~X · ~X0 + ~X0

2 − K = 0.

Lemma 28. A conic 〈P :~q :r〉 is not a circle in the geometry G if G 6= λP for

some λ 6= 0.

Proof. If 〈P : ~q : r〉 is a circle, then from the general form given above there

exists an equivalent conic 〈P ′ :~q′ :r′〉 such that P ′ = λP = G for λ 6= 0. If no

such P ′ can be found then the conic is not a circle.

Theorem 29. If a conic 〈P : ~q : r〉 in the geometry G satisfies λP = G with

λ 6= 0 then it is a circle in G with centre and quadrance given by

~X0 = −λ

2
G−1~q (3.29)

K = ~X0

2 − λr. (3.30)

Proof. These results follow directly from (3.27) and (3.28).

Corollary 30. A conic 〈P : ~q : r〉 is a circle in a geometry G if and only if

G = λP with λ 6= 0.

Proof. This is essentially a restatement of Lemma 28 and Theorem 29 com-

bined.

Corollary 31. Every conic 〈P : ~q : r〉 where det(P) 6= 0 is a circle in some

geometry G.

Proof. If we let G = P then G is a valid geometry, since det(G) 6= 0 and P is

a circle in G.

A result of Euclidean geometry which is taught to all high school students

is that the radius of a circle to a point on the circle is perpendicular to the

tangent at that point. In planar universal geometry we can obtain a more

general result, which contains the equivalent of the radius-tangent rule as a

special case.

26 CHAPTER 3. CONICS

Theorem 32 (Pole to a circle). Given a point X1 and a circle with centre

X0, the polar of X1 is l1 where

(

a1

b1

)

= 2G(~X1 − ~X0) (3.31)

c1 = 2 ~X0G(~X0 − ~X1) − 2K. (3.32)

Proof. Combining the equations for the polar from Theorem 14 and the gen-

eral form of a circle we get

(

a1

b1

)

= ~q + 2P ~X1

= −2G ~X0 + 2G ~X1

= 2G(~X1 − ~X0)

c1 = ~q · ~X1 + 2r

= (−2G ~X0) · ~X1 + 2(~X0

2 − K)

= 2 ~X0G(~X0 − ~X1) − 2K.

Theorem 33. Given a point X1 and a circle with centre X0, the line which

passes through the centre of the circle and X1 is perpendicular to the polar of

X1.

Proof. We let r = 〈y0 − y1 : x1 − x0 : x0y1 − x1y0〉 be the line through the

centre, X0 and the point X1. If we denote the tangent vector as ~t then from

the previous theorem we have

~t = 2

(

−b(x0 − x1) − c(y0 − y1)

a(x0 − x1) + b(y0 − y1)

)

~r =

(

x0 − x1

y0 − y1

)

~t · ~r = 2

(

−b(x0 − x1) − c(y0 − y1)

a(x0 − x1) + b(y0 − y1)

)(

a b

b c

)(

x0 − x1

y0 − y1

)

= 2

(

−b(x0 − x1) − c(y0 − y1)

a(x0 − x1) + b(y0 − y1)

)(

a(x0 − x1) + b(y0 − y1)

b(x0 − x1) + c(y0 − y1)

)

= 0.

3.5. PARABOLA 27

Corollary 34. Given a point X1 on a circle, the tangent passing through this

point is perpendicular to the line through X1 and the centre of the circle.

Proof. Since the tangent through X1 is also the polar of X1 this follows directly

from Theorem 33.

3.5 Parabola

Probably the first quadratic equation a maths student will meet is y = x2,

which describes a parabola in Euclidean geometry. As one might expect, we

can construct such objects in planar universal geometry.

Definition 29. A parabola is the locus of points whose quadrance to a point

X0 is equal to its quadrance to a line l1. A parabola is essentially a general

conic with K = 1.

Theorem 35. The general form of a parabola with focus X0, directrix l1 is

〈P :~q :r〉 where

P = G − αM(a1, b1) (3.33)

~q = −2(GX0 + c1α(a1, b2)) (3.34)

r = X2
0 − αc2

1. (3.35)

Proof. This result follows directly from letting K = 1 in equations (3.13)-

(3.15).

Theorem 36. A conic 〈P :~q :r〉 is a parabola if and only if det(P) = 0.

Proof. Taking determinants of each side in equation (3.33) yields

|P | = |G − αM(a1, b1)|
= (a − αa2

1)(c − αb2
1) − (b − αa1b1)

2

= ac − b2 − α(ca2
1 − 2ba1b1 + ab2

1) + α2(a2
1b

2
1 − a2

1b
2
1)

= ∆G − ∆G

‖~l1‖
‖~l1‖

= 0.

Corollary 37. If a conic is a parabola in any geometry then it is a parabola

in all geometries.

28 CHAPTER 3. CONICS

Proof. This result follows direction from the fact that the conditions in The-

orem 36 are independent of the geometry.

Theorem 38. A parabola has only a single directrix/focus pair.

Proof. To find the directrices of a conic we need to solve equation (3.20),

which is

0 = 4Kα(‖~l1‖Kα − ∆G)c2
1 + 4Kα(~Q · ~l1)c1 + (~Q · ~Q − 4∆GF).

For a parabola with K = 1 we have ‖~l1‖Kα−∆G = ‖~l1‖ ∆G

‖~l1‖
−∆G = 0, which

reduces the quadratic equation to a linear equation, which will only have one

root.

Theorem 39. The focus and directrix of a parabola 〈P : ~q : r〉 are l1 and X0

where

a1 = a − A (3.36)

b1 = b − B/2 (3.37)

c1 =
4∆GF − ~Q · ~Q

4α(~Q · ~l1)
(3.38)

~X0 = −1

2
G−1

(

~q + 2c1α

(

a1

b1

))

(3.39)

and

~Q =

(

−E

D

)

(3.40)

α =
∆G

‖~l1‖
. (3.41)

Proof. The results for a1, b1 and X0 come directly from Theorems 22 and 26

for a general conic. From the proof of Theorem 38 we have seen that c1 is the

solution of the equation

0 = 4Kα(~Q · ~l1)c1 + (~Q · ~Q − 4∆GF)

from which the result directly follows.

3.6. GRAMMOLAS 29

3.6 Grammolas

Conic sections in Euclidean geometry are generally described as parabolas,

hyperbolas and ellipses. While planar universal geometry has parabolas as

a fundamental object, the notion of hyperbolas and ellipses do not manifest

themselves as distinct objects. The simplest example to demonstrate this is

the unit circle in the green geometry of chromogeometry. This object has the

equation xy − 1 = 0, and is, by definition, a circle in the green geometry.

The same equation considered in the blue geometry (i.e. regular Euclidean

geometry) is not a circle, but a hyperbola.

In place of hyperbolas and ellipses, we have objects known as grammolas and

quadrolas. These objects have been studied in the context of chromogeometry

[7], and are presented here in the context of planar universal geometry.

Definition 30. A grammola is defined as the locus of points such that the

sum of quadrances from each point to two given lines is a constant. Given two

lines d1 and d2, the diagonals, and a constant K, the points on a grammola

satisfy the equation

Q(X, d1) + Q(X, d2) = K. (3.42)

Theorem 40. Given non-null diagonals d1 = 〈a1 :b1 :c1〉, d2 = 〈a2 :b2 :c2〉 and

constant K, the general form of the grammola satisfying Q(X, d1)+Q(X, d2) =

K is 〈P :~q :r〉 where

P = ‖~d1‖M(a2, b2) + ‖~d2‖M(a1, b1) (3.43)

~q = 2

(

a1 a2

b1 b2

)

(

‖~d2‖c1

‖~d1‖c2

)

(3.44)

r = c2
1‖~d2‖ + c2

2‖~d1‖ −
K‖~d1‖‖~d2‖

∆G

(3.45)

Proof. Starting from the definition and using equation (2.20) we find

0 = Q(X, d1) + Q(X, d2) − K

=
d1(X)2

‖~d1‖
∆G +

d2(X)2

‖~d2‖
∆G − K

= ‖~d2‖(a1x + b1y + c1)
2 + ‖~d1‖(a2x + b2y + c2)

2 − K‖~d1‖‖~d2‖
∆G

.

From this expression the result follows immediately.

30 CHAPTER 3. CONICS

As with the general conics before, we would like to be able to take a grammola

and find its diagonals.

Definition 31. A vector ~d1 =

(

−b1

a1

)

is a diagonal vector of the conic 〈P :~q :r〉
if and only if

2A‖~d1‖ − a2
1(Ac − Bb + Ca)

2‖~d1‖2
= λ2 (3.46)

2C‖~d1‖ + b2
1(Ac − Bb + Ca)

2‖~d1‖2
= µ2 (3.47)

for some λ, µ ∈ F. The motivation for this definition will become clear below.

Definition 32. If d1 and d2 are the diagonals of a conic then d1 is the co-

diagonal of d2 and vice-versa. Likewise, ~d1 is the co-diagonal vector of ~d2 and

vice-versa.

Theorem 41. If ~d1 is a diagonal vector of the conic 〈P : ~q : r〉 then its co-

diagonal vector is ~d2 where

a2
2 =

2A‖~d1‖ − a2
1(Ac − Bb + Ca)

2‖~d1‖2
(3.48)

b2
2 =

2C‖~d1‖ + b2
1(Ac − Bb + Ca)

2‖~d1‖2
(3.49)

a2

b2
=

2A‖~d1‖ − a2
1(Ac − Bb + Ca)

B‖~d1‖ − a1b1(Ac − Bb + Ca)
. (3.50)

Proof. To complete this proof we need to solve the system of equations rep-

resented in equation (3.43). We start by finding expressions for a2
2, b2

2 and

3.6. GRAMMOLAS 31

a2b2.

A = ‖~d1‖a2
2 + ‖~d2‖a2

1

= ‖~d1‖a2
2 + (ab2

2 − 2ba2b2 + ca2
2)a

2
1

B = 2(‖~d1‖a2b2 + ‖~d2‖a1b1)

= 2‖~d1‖a2b2 + 2(ab2
2 − 2ba2b2 + ca2

2)a1b1

C = ‖~d1‖b2
2 + ‖~d2‖b2

1

= ‖~d1‖b2
2 + (ab2

2 − 2ba2b2 + ca2
2)b

2
1

a2
2 =

A − aa2
1b

2
2 + 2ba2

1a2b2

‖~d1‖ + ca2
1

a2b2 =
B − 2aa1b1b

2
2 − 2ca1a

2
2b1

2‖~d1‖ − 4ba1b1

b2
2 =

C − ca2
2b

2
1 + 2ba2b

2
1b2

‖~d1‖ + ab2
1

.

At this stage we introduce a new symbol, w = ‖~d1‖+ ab2
1 to ease the algebra.

Eliminating b2
2 we get

a2
2 =

A − aa2
1

(

C−ca2

2
b2
1
+2ba2b2

1
b2

‖ ~d1‖+ab2
1

)

+ 2ba2
1a2b2

‖~d1‖ + ca2
1

(‖~d1‖ + ab2
1)(‖~d1‖ + ca2

1)a
2
2 = Aw − aa2

1(C − ca2
2b

2
1 + 2ba2b

2
1b2) +

2ba2
1a2b2w

((‖~d1‖ + ab2
1)(‖~d1‖ + ca2

1) − aca2
1b

2
1)a

2
2 = Aw − Caa2

1 + 2ba2
1a2b2(w − ab2

1)

‖~d1‖(w + ca2
1)a

2
2 = Aw − Caa2

1 + 2ba2
1a2b2‖~d1‖

and

a2b2 =
B − 2aa1b1

(

C−ca2

2
b2
1
+2ba2b2

1
b2

‖ ~d1‖+ab2
1

)

− 2ca1a
2
2b1

2‖~d1‖ − 4ba1b1

(‖~d1‖ + ab2
1)(2‖~d1‖ − 4ba1b1)a2b2 = Bw − 2aa1b1(C − ca2

2b
2
1 + 2ba2b

2
1b2) −

2ca1a
2
2b1w

((‖~d1‖ + ab2
1)(2‖~d1‖ − 4ba1b1)+

4aba1b
3
1)a2b2 = Bw − 2Caa1b1 − 2ca1a

2
2b1(w − ab2

1)

2‖~d1‖(w − 2ba1b1)a2b2 = Bw − 2Caa1b1 − 2ca1a
2
2b1‖~d1‖

a2b2 =
Bw − 2Caa1b1 − 2ca1a

2
2b1‖~d1‖

2‖~d1‖(w − 2ba1b1)
.

32 CHAPTER 3. CONICS

We introduce a new variable z = Ac−Bb+Ca to further simplify the algebra.

Substituting the previous expression into our equation for a2
2 we get

‖~d1‖(w + ca2
1)a

2
2 = (Aw − Caa2

1) + ba2
1

(

Bw − 2Caa1b1 − 2ca1a
2
2b1‖~d1‖

(w − 2ba1b1)

)

‖~d1‖(w − 2ba1b1)(w + ca2
1)a

2
2 = (w − 2ba1b1)(Aw − Caa2

1) + ba2
1(Bw − 2Caa1b1)

−2bca3
1a

2
2b1‖~d1‖

‖~d1‖((w − 2ba1b1)(w + ca2
1)+

2bca3
1b1)a

2
2 = Aw2 − 2Aba1b1w − Caa2

1w + ba2
1Bw

‖~d1‖w(w − 2ba1b1 + ca2
1)a

2
2 = Aw2 − 2Aba1b1w − Caa2

1w + ba2
1Bw

2‖~d1‖2a2
2 = A(w − 2ba1b1) − Caa2

1 + ba2
1B

2‖~d1‖2a2
2 = 2A‖~d1‖ − Aca2

1 − Caa2
1 + ba2

1B

2‖~d1‖2a2
2 = 2A‖~d1‖ − a2

1z

a2
2 =

2A‖~d1‖ − a2
1z

2‖~d1‖2
.

We can now use this expression to find a2b2.

a2b2 =
Bw − 2Caa1b1 − 2ca1b1

(

2A‖ ~d1‖−a2

1
z

2‖ ~d1‖2

)

‖~d1‖

2‖~d1‖(w − 2ba1b1)

=
‖~d1‖(Bw − 2Caa1b1) − ca1b1(2A‖~d1‖ − a2

1z)

2‖~d1‖2(2‖~d1‖ − ca2
1)

=
‖~d1‖(B(2ab2

1 − 2ba1b1 + ca2
1) − 2Caa1b1 − 2Aca1b1) + ca3

1b1z

2‖~d1‖2(2‖~d1‖ − ca2
1)

=
‖~d1‖(B(2ab2

1 − 4ba1b1 + ca2
1) − 2a1b1z) + ca3

1b1z

2‖~d1‖2(2‖~d1‖ − ca2
1)

=
‖~d1‖B(2ab2

1 − 4ba1b1 + 2ca2
1 − ca2

1) + a1b1(ca
2
1 − 2‖~d1‖)z

2‖~d1‖2(2‖~d1‖ − ca2
1)

=
‖~d1‖B(2‖~d1‖ − ca2

1) + a1b1(ca
2
1 − 2‖~d1‖)z

2‖~d1‖2(2‖~d1‖ − ca2
1)

=
‖~d1‖B − a1b1z

2‖~d1‖2
.

3.6. GRAMMOLAS 33

We can now use the values of a2b2 and a2
2 to find b2

2.

b2
2 =

C − ca2
2b

2
1 + 2ba2b

2
1b2

‖~d1‖ + ab2
1

=
C − cb2

1

(

2A‖ ~d1‖−a2

1
z

2‖ ~d1‖2

)

+ 2bb2
1

(

‖ ~d1‖B−a1b1z

2‖ ~d1‖2

)

‖~d1‖ + ab2
1

=
2‖~d1‖2C − cb2

1(2A‖~d1‖ − a2
1z) + 2bb2

1(‖~d1‖B − a1b1z)

2‖~d1‖2(‖~d1‖ + ab2
1)

=
‖~d1‖(2‖~d1‖C − 2Acb2

1 + 2bb2
1B) + a1b

2
1(ca1 − 2bb1)z

2‖~d1‖2(‖~d1‖ + ab2
1)

=
‖~d1‖(2Cab2

1 − 4Cba1b1 + 2Cca2
1 − 2Acb2

1 + 2bb2
1B) + a1b

2
1(ca1 − 2bb1)z

2‖~d1‖2(‖~d1‖ + ab2
1)

=
‖~d1‖(4Cab2

1 − 4Cba1b1 + 2Cca2
1) + b2

1(ca
2
1 − 2ba1b1 − 2‖~d1‖)z

2‖~d1‖2(‖~d1‖ + ab2
1)

=
2C‖~d1‖(‖~d1‖ + ab2

1) + b2
1(‖~d1‖ + ab2

1)z

2‖~d1‖2(‖~d1‖ + ab2
1)

=
2C‖~d1‖ + b2

1z

2‖~d1‖2
.

We finally take the ratio of a2
2 and a2b2 to establish the appropriate roots to

take when calculating values of a2 and b2.

a2

b2
=

a2
2

a2b2

=
2A‖~d1‖ − a2

1z

B‖~d1‖ − a1b1z
.

This result motivates our original definition of the the diagonal vectors as we

have expressions for the squares of a2 and b2.

Theorem 42. Given a conic 〈P : ~q : r〉 with diagonal vectors ~d1 and ~d2, the

diagonals are d1 and d2 where

c1 =
b2D − a2E

2‖~d2‖(a1b2 − a2b1)
(3.51)

c2 =
a1E − b1D

2‖~d1‖(a1b2 − a2b1)
. (3.52)

34 CHAPTER 3. CONICS

Proof. Starting from equation (3.44) we find

~q = 2

(

a1 a2

b1 b2

)

(

‖~d2‖c1

‖~d1‖c2

)

(

‖~d2‖c1

‖~d1‖c2

)

=
1

2

(

a1 a2

b1 b2

)−1

~q

=
1

2(a1b2 − a2b1)

(

−b2 −a2

−b1 a1

)(

D

E

)

=
1

2(a1b2 − a2b1)

(

b2D − a2E

a1E − b1D

)

.

Theorem 43. Given a conic 〈P :~q :r〉 with diagonals d1 and d2, the grammola

constant K is given by

K = ∆G

(

c2
1

‖~d1‖
+

c2
2

‖~d2‖
− F

‖~d1‖‖~d2‖

)

. (3.53)

Proof. This result follows directly from equation (3.45).

Corollary 44. Given a conic 〈P :~q :r〉 and a single diagonal vector ~d1, we can

calculate the diagonals d1 and d2 as well as the grammola constant K.

Proof. From Theorem 41 we can find the co-diagonal vector ~d2. Theorem 42

then lets us find the diagonals d1 and d2 which in turn can be used in Theorem

43 to find the constant K.

3.7 Quadrolas

While grammolas are defined with respect to two lines, the diagonals, we

define their counterpart, the quadrola, with respect to two points.

Definition 33. Given two points, X1 and X2, and a constant K, a quadrola is

defined as the locus of points satisfying the equation A(Q(X, X1), Q(X, X2), K) =

0.

3.7. QUADROLAS 35

Theorem 45. Given two points, X0 = [x0, y0] and X1 = [x1, y1], and a

constant K, the general form of their quadrola is 〈P :~q :r〉 where

P = 4M(a∆x + b∆y, b∆x + c∆y) − 4KG (3.54)

~q = 4(~X0

2 − ~X1

2
)G∆ ~X + 4KG(~X0 + ~X1) (3.55)

r =
(

K − ~X0

2 − ~X1

2
)2

− 4 ~X0

2 ~X1

2
(3.56)

and ∆ ~X = ~X1 − ~X0, ∆x = x1 − x0 and ∆y = y1 − y0.

Proof. If we let Q1 = Q(X, X1) and Q2 = Q(X, X2), then from the definition

and equation (2.11) we have

0 = (Q1 + Q2 + K)2 − 2(Q2
1 + Q2

2 + K2)

= Q2
1 + Q2

2 + K2 − 2(Q1Q2 + KQ1 + KQ2)

= (Q1 − Q2)
2 − 2K(Q1 + Q2) + K2.

Expressing this in terms of X, and using metric dot products we have

0 =
((

~X2 − 2(~X · ~X0) + ~X0

2
)

−
(

~X2 − 2(~X · ~X1) + ~X1

2
))2

−2K
((

~X2 − 2(~X · ~X0) + ~X0

2
)

+
(

~X2 − 2(~X · ~X1) + ~X1

2
))

+ K2

=
(

2 ~X · (~X1 − ~X0) + (~X0

2 − ~X1

2
)
)2

−2K
(

2 ~X2 − 2 ~X · (~X0 + ~X1) + ~X0

2
+ ~X1

2
)

+ K2

=
(

2 ~X · (~X1 − ~X0)
)2

+ 4(~X0

2 − ~X1

2
) ~X · (~X1 − ~X0) +

(

~X0

2 − ~X1

2
)2

−2K
(

2 ~X2 − 2 ~X · (~X0 + ~X1) + ~X0

2
+ ~X1

2
)

+ K2

= 4
(

~X · (~X1 − ~X0)
)2

− 4K ~X2

+4(~X0

2 − ~X1

2
) ~X · (~X1 − ~X0) + 4K ~X · (~X0 + ~X1)

−2K(~X0

2
+ ~X1

2
) +

(

~X0

2 − ~X1

2
)2

+ K2

= 4

(

(

~X · (~X1 − ~X0)
)2

− K ~X2

)

+4
(

(~X0

2 − ~X1

2
) ~X · (~X1 − ~X0) + K ~X · (~X0 + ~X1)

)

+
(

K − ~X0

2 − ~X1

2
)2

− 4 ~X0

2 ~X1

2
.

36 CHAPTER 3. CONICS

The inverse problem for a quadrola is significantly more difficult than for a

grammola, since the equations we need to solve are quartic. As such, the

inverse problem is not addressed here, but would be a natural progression in

the development of the theory of quadrolas in planar universal geometry.

Chapter 4

Pygeom Library

Having established the core mathematical theories involved in planar universal

geometry, it will be helpful to have a tool which allows us to perform the

calculations involved in any practical application. In this chapter we present

the pygeom library, a Python package for performing calculations in planar

universal geometry.

The classes, functions and interfaces provided by the library are described

here. While full technical detail is avoided, it is assumed that the reader has

a basic understanding of the Python language1.

4.1 Overview

The pygeom library contains a number of modules, each of which implements

a particular piece of functionality. The modules described here are the field,

geometry, core and pairs modules, which constitute the library API intended

for the user.

These modules form a natural hierarchy, with each building on the function-

ality provided by the previous. From simplest to most complex, the hierarchy

of modules is field → geometry → core → pairs.

1For language references, tutorials and downloads see http://www.python.org

37

38 CHAPTER 4. PYGEOM LIBRARY

4.2 Fields

The underlying premise of universal geometry is that all calculations are per-

formed over some field F, not of characteristic two. It stands to reason that

pygeom must be able to support field calculations over standard fields. In

particular pygeom currently supports the fields Q and Zp for primes p. The

design also provides the flexibility for users to define their own fields if they

need to perform calculations in a non-supported field.

4.2.1 Field

Like most procedural programming languages, Python has operators for adding,

subtracting, multiplying and dividing variables. Since these represent the core

field operations, we would like to be able to use them to operate on the vari-

ables we use to represent members of a field.

Another property of fields is that they each contain a zero element and a

one element. Combined with the addition operator, it can be seen that every

integer has a natural representation in any given field. As such we would

like to support the addition, multiplication, etc of field variables with regular

Python integers.

Finally, from the closure property of fields, we expect that any mathematical

operation on a field variable would return a new variable from the same field.

These design considerations are all addressed in the implementation of fields

in pygeom .

The class Field (Figure 4.1), from field.py, provides a mostly abstract base

class from which the classes for different fields should derive. It contains a

number of methods, all of which must be implemented by any subclass. The

interface for this class overrides all of the standard mathematical operators,

as well as equality testing. It also provides a small number of non-operator

methods.

The is square() method is a boolean method which determines whether a

value is a square number in the field. The sqrt() will return the square root

of a number, assuming that it is indeed a square in the field. The reduce()

method takes a set of numbers from the field and scales them all by a common

factor to get them into a standard form, which is subclass specific. This

method is particularly useful in finding standard representations of lines and

conics. Finally, the class method random() creates a random element of the

4.2. FIELDS 39

class Field(object):

def __init__(self, value, *args, **kwargs):

def __add__(self, other):

def __sub__(self, other):

def __mul__(self, other):

def __neg__(self):

def __div__(self, other):

def __radd__(self, other):

def __rsub__(self, other):

def __rmul__(self, other):

def __rdiv__(self, other):

def __eq__(self, other):

def __ne__(self, other):

def is_square(self):

def sqrt(self):

def reduce(self, others):

@classmethod

def random(cls):

Figure 4.1: The Field class interface.

class. This method is particularly useful when generating test data.

40 CHAPTER 4. PYGEOM LIBRARY

4.2.2 Rational

The Rational class is a subclass of Field and implements the field Q. Ratio-

nal variables can be created either from pairs of integers, representing the nu-

merator and denominator, or from individual integers. Internally, a standard

gcd algorithm is used to ensure the the rational number is always stored in

lowest terms. Since Python supports arbitrarily large integers, the Rational

class can be used to represent fractions of arbitrary precision.

When generating random Rational variables, numerators and denominators

in the range [−10, 10] are used, however this can be modified by adjusting the

values of Rational. min random and Rational. max random as required.

The .reduce() method on Rational objects multiplies the set of numbers by

the lowest common multiple of their denominators, ensuring that the resulting

set contains integers with no common factor.

The .sqrt() method uses an algorithm based on Newton’s method2. Testing

for squareness in .is square() is done by taking the square root and checking

it squares back to the original number. This will always work, since the

integer square root algorithm used always returns the floor of the square root

(e.g. isqrt(x) = ⌊√x⌋). As such only a square number will satisfy x ==

x.sqrt()*x.sqrt().

4.2.3 FiniteField

The fields Zp, which are the integers modulo p for prime p, are supported

in pygeom by the FiniteField class. Each object of type FiniteField will

have a member . base, which specifies the value of p. To avoid having to

specify this value each time a new variable is created, a class variable .base

is maintained. This can be set once and all subsequent object instantiations

will use the same value. It remains to be seen whether this design choice is

sound, as it may end up making it confusing for a user who regularly wishes

to switch between different bases.

The .reduce() method multiplies each number in the set by the inverse of

the first number, ensuring that the first number is always 1.

The .is square() method uses the fact that if x is a square number then

x(p−1)/2 ≡ 1 (mod p). The current implementation uses an O(p) algorithm to

do this calculation, however this could be optimized to O(ln(p)) using modular

2See http://en.wikipedia.org/wiki/Integer square root

4.2. FIELDS 41

exponentiation. The .sqrt() method uses an implementation of the Shanks-

Tonelli algorithm3. If one assumes the Generalised Riemann Hypothesis then

this algorithm can be shown to run in polynomial time with O(ln4p) [8]. These

algorithms were chosen for their ease of implementation over pure speed, and

may be an area for optimization for future versions of pygeom .

4.2.4 Field of Algebraic Expressions

If we consider the set of algebraic expressions consisting of zero or more vari-

ables we can see that it constitutes a field. In theory we could thus implement

a class to represent this field and perform calculations symbolically. Such a

class would in fact let us perform symbolic calculations, allowing us to quickly

perform the algebra needed to calculate general geometric theorems. Indeed,

a prototype class was initially implemented with this goal in mind, however

it quickly became clear that the amount of computation involved in reducing

algebraic expressions to their simplest terms was impractical.

A future development goal for the pygeom package should be to integrate it

with a symbolic computing package, such as Sympy4, to allow such calculations

to be performed quickly and efficiently.

4.2.5 Real Numbers

A canonical field in mathematics is R, the set of real numbers. Real numbers

are generally represented as floating point numbers in software. The floating

point numbers can only represent a finite number of different values and as

such are only an approximation to the real numbers. In particular, they do

not obey the field axioms. The following example demonstrates this.

In [1]: 1e100 + 1e-100 == 1e100

Out[1]: True

In this case we have a + b = a, where b 6= 0, which violates the field axioms.

Consideration of any other representation scheme for the real numbers will

also quickly run into problems and as such pygeom is not able to provide a

class to represent the real numbers. Users who wish to approximate the real

numbers are advised to use the Rational class.

3See http://planetmath.org/encyclopedia/ShanksTonelliAlgorithm.html
4http://code.google.com/p/sympy/

42 CHAPTER 4. PYGEOM LIBRARY

4.2.6 Examples

The following interactive Python session demonstrates some of ways in which

pygeom field variables can be used.

>>> from pygeom.field import Rational

>>> # Create two varibles.

>>> x = Rational(1, 2)

>>> y = Rational(5, 3)

>>>

>>> # Print their values.

>>> print x, y

1/2 5/3

>>>

>>> # Field operations.

>>> x + y

13/6

>>> x*y

5/6

>>> x/y

3/10

>>> x - y

-7/6

>>> x + 10

21/2

>>>

>>> # We expect x*x to be a square number, but not

>>> # x on its own.

>>> (x*x).is_square()

True

>>> x.is_square()

False

>>>

>>> # We expect the square root of x*x to be x.

>>> (x*x).sqrt()

1/2

>>> (x*x).sqrt() == x

True

>>>

>>> # Multiply x and y by their LCM

>>> x.reduce([y])

4.3. GEOMETRIES 43

[3/1, 10/1]

>>>

>>> # Generate some random numbers.

>>> Rational.random()

-10/7

>>> Rational.random()

-6/1

>>>

4.3 Geometries

As well as operating over a particular field, any calculations in planar uni-

versal geometry must also be done in the context of a particular geometry,

represented by a quadratic form. The geometry.py module provide support

for creating and working with such objects.

4.3.1 Geometry

The geometries of planar universal geometry are represented with objects of

the Geometry class, whose interface is given in Figure 4.2. This class has a

single data member, .form, which stores the quadratic form of the geometry.

The form is stored as a 3-tuple (a, b, c), representing the quadratic form
(

a b

b c

)

.

The class has three methods. The .det() method calculates the determinant

of the quadratic form, i.e. G.det() corresponds to ∆G. The .norm() method

calculates the norm of a Point object (see section 4.4.1), i.e if X0 is a Point

representing X0 then G.norm(X0) corresponds to ‖ ~X0‖G. The metric dot

product of two Points can be found with the _dot() method, i.e. G.dot(X0,

X1) corresponds to ~X0 ·G ~X1.

4.3.2 Chromogeometry

The geometry.py module also provides functions to create the three ge-

ometries of chromogeometry in a given field. The functions blue(field),

red(field) and green(field) will return Geometry objects corresponding

to the respective geometries over the given field.

44 CHAPTER 4. PYGEOM LIBRARY

class Geometry(object):

def __init__(self, a, b, c):

def dot(self, point1, point2):

def det(self):

def norm(self, point):

def __repr__(self):

def __eq__(self, other):

def __ne__(self, other):

Figure 4.2: The Geometry class interface.

4.4 Core Objects

There are three types of geometrical objects which we encounter in planar

universal geometry; points, lines and conics. In pygeom these are represented

in the classes Point, Line and Conic respectively, all of which are defined in

core.py.

Core objects may optionally be associated with a particular geometry. Indeed,

certain methods of the core object require a geometry to be specified. The

methods which require a geometry to be specified are decorated with the

@check geometry decorator, which raises GeometryError if a geometry has

not been specified.

The core classes have two common methods. The .form() method returns a

tuple of numbers (Field objects) which are the canonical form of the object.

The .eval() method check whether an (x, y) tuple “corresponds” to the ob-

ject. For points this means that tuple is equal to the form of the point. For

lines and conics, this means that the point [x, y] lies on the line or conic.

4.4. CORE OBJECTS 45

4.4.1 Point

While the notions of a point and a vector are subtly distinct in an abstract

sense, the two are sufficiently similar that pygeom represents them both using

a single class. The Point class (Figure 4.3), when thought of as representing

vectors, supports the basic vector space operations of addition and scalar

multiplication. When the Point is associated with a particular geometry,

the vector norm can also be taken using the .norm() method. The boolean

method .null() determines whether the point is a null point in its geometry.

class Point(Core):

def __init__(self, x, y, geometry=None):

def form(self):

def eval(self, x, y):

def __repr__(self):

def __sub__(self, other):

def __mul__(self, other):

def __rmul__(self, other):

def __add__(self, other):

def __div__(self, other):

@check_geometry

def null(self):

@check_geometry

def norm(self):

def circle(self, quadrance):

Figure 4.3: The Point class interface.

Given a single point, the only geometric object we can construct is a circle.

The .circle() method takes a quadrance and returns a Conic representing

46 CHAPTER 4. PYGEOM LIBRARY

a circle centred at the point and having the given quadrance.

4.4.2 Line

The Line class (Figure 4.4) represents the line 〈a :b :c〉 by storing the tuple (a,

b, c) as the form. Other than the core methods, this class only provides two

new methods. The .vector() method returns a Point object, representing

the vector representation of the line, e.g. the point [−b, a]. The boolean

method .null() checks whether the line is a null line in its geometry.

class Line(Core):

def __init__(self, a, b, c, geometry=None):

def form(self):

def eval(self, x, y):

def __repr__(self):

def vector(self):

@check_geometry

def null(self):

Figure 4.4: The Line class interface.

4.4.3 Conic

The Conic class represents the conic 〈A : B : C : D : E : F 〉 by storing a tuple

(a, b, c, d, e, f) as the form.

The boolean .through() method will determine whether the conic passes

through the given point. The protected method . point on() will create a

point which does lie on the conic, so conic.through(conic. point on())

== True. This method is protected as it is only expected to be used by the

test suite (see chapter 5) and is not part of the public API.

If we take a conic object as representing the conic 〈P :~q : r〉 then the method

.det() will return the value of the determinant ∆P .

4.4. CORE OBJECTS 47

class Conic(Core):

def __init__(self, a, b, c, d, e, f, geometry=None):

def form(self):

def __repr__(self):

def eval(self, x, y):

def through(self, point):

def det(self):

def _point_on(self):

def is_parabola(self):

@check_geometry

def is_circle(self):

@check_geometry

def centre_quadrance(self):

@check_geometry

def focus_directrix(self):

def co_diagonal(self, line):

def tangent(self, point):

def is_tangent(self, line):

def pole(self, polar):

def polar(self, pole):

Figure 4.5: The Conic class interface.

The method .tangent() will create the tangent line passing through the point

given as a parameter. This method requires the point to lie on the conic. The

method boolean .is tangent() will check whether the given line is a tangent

of the conic.

48 CHAPTER 4. PYGEOM LIBRARY

The method .focus directrix() can be used to find both focus/directrix

pairs, as well as the associated constant, of a conic which is not a circle. This

method returns a tuple (focus direc 1, focus direc 2, K) where the first

two elements are PointLine objects and the last is a field value.

If a conic is a grammola then given one diagonal, we can find its co-diagonal

as well as the grammola constant. The .co diagonal() method will return a

(Line, Field) tuple representing these values, given a valid diagonal line.

If a conic is a circle then the method .centre quadrance() will return a

(Point, Field) tuple representing the centre and the quadrance of the circle.

The pair of methods .is parabola() and .is circle() are boolean func-

tions to checks whether the conic is a parabola or a circle respectively. The

methods .pole() and .polar() allow poles and polars to be calculated. They

are inverse functions of each other so conic.polar(conic.pole(line)) ==

line.

4.5 Paired Objects

While the core objects are the fundamental building blocks of the pygeom

library, they have limited power when taken as individual entities. However

when we pair the objects together we open up a world of possible construc-

tions. The pairs.py module provides three classes representing pairs of Lines

and Points. Working with these classes we can construct many interesting

geometrical objects.

4.5.1 LineSegment

If we take two distinct points X0 and X1 they represent a segment on a line.

The LineSegment class (Figure 4.6) is constructed from two Point objects

and can be used to construct objects with respect to these points and the line

passing through them.

The quadrance between the two points can be found with the .quadrance()

method. The midpoint between the two points, being the point on the

line which is equiquadrance from the two points, can be found using the

.midpoint() method. Likewise, the .perp bisector() will construct the

line passing through the midpoint, perpendicular to the line through the two

points.

4.5. PAIRED OBJECTS 49

class LineSegment(object):

def __init__(self, point1, point2):

def __eq__(self, other):

@check_geometry

def midpoint(self):

@check_geometry

def perp_bisector(self):

@check_geometry

def quadrance(self):

@check_geometry

def quadrola(self, K):

Figure 4.6: The LineSegment class interface.

The two points of a LineSegment can also be used to form a quadrola. If

X0 and X1 are the two points represented by the LineSegment and K is a

number then the .quadrola() method will construct a Conic representing

the quadrola satisfying A(Q(X, X0), Q(X, X1), K) = 0.

4.5.2 Vertex

A pair of non-parallel lines taken together meet at a vertex. This motivates the

pygeom class Vertex (Figure 4.7), which represents a pair of lines, although we

don’t restrict ourselves to non-parallel lines. The point of intersection of the

lines can be accessed through the .point class member. The boolean method

.parallel() allows the user to check whether the lines are parallel or not.

One of the fundamental ideas in universal geometry is the measure of the

spread between two lines. The .spread() method will calculate the spread of

the lines in a vertex. The boolean .perpendicular() method uses the spread

to determine whether the two lines are perpendicular in their geometry.

For any non-parallel pair of lines, there will be two bisectors. These two bisec-

tors themselves form a new vertex and can be constructed with the .bisect()

method.

50 CHAPTER 4. PYGEOM LIBRARY

class Vertex(object):

def __init__(self, line1, line2):

def __eq__(self, other):

def parallel(self):

@check_geometry

def spread(self):

@check_geometry

def perpendicular(self):

@check_geometry

def bisect(self):

@check_geometry

def grammola(self, K):

Figure 4.7: The Vertex class interface.

The two lines of a vertex can be used as the diagonals in the construction

of a grammola, using the .grammola() method, which returns a new Conic

object.

4.5.3 PointLine

The most versatile combination of core objects is to be found when a point

and a line are combined. The PointLine class (Figure 4.8) represents this

pairing and provides a number of methods to make new constructions. It also

provides the boolean method .on() to check whether the point lies on the

line.

The simplest construction is that of a new line which is parallel to the line and

passes through the point. The .parallel() method constructs this line and

should not be confused with the .parallel() method of the Vertex class.

The .altitude() method returns a new PointLine representing the altitude,

and its foot, of the point. A new PointLine can be constructed which is a

reflection of the point through the line. This construction is performed by the

4.5. PAIRED OBJECTS 51

class PointLine(object):

def __init__(self, point, line):

def __eq__(self, other):

def on(self):

@check_geometry

def reflection(self):

@check_geometry

def altitude(self):

def parallel(self):

@check_geometry

def quadrance(self):

@check_geometry

def construct_quadrance(self, quadrance):

@check_geometry

def construct_spread(self, spread):

@check_geometry

def parabola(self):

@check_geometry

def conic(self, K):

Figure 4.8: The PointLine class interface.

.reflection() method.

If one tries to construct a new line which passes through the point and forms a

given spread with the original line they will find two solutions. These two solu-

tions can be constructed in the form of a Vertex using the .construct spread()

method. Likewise, there are, in general, two new points which lie on the line

and are a given quadrance from the original point. A LineSegment can be con-

structed to represent these two solutions using the .construct quadrance()

method.

52 CHAPTER 4. PYGEOM LIBRARY

If we take the point and line as a focus and directrix pairing, we can construct

a conic with constant K with the .conic() method. Likewise, a parabola can

be constructed with the .parabola() method. This is equivalent to calling

.conic() with a value of 1.

4.6 Examples

To give a demonstration of how the library can be used, we will use it to solve

the following problem:

Calculate the following in the field Z13 working with the red ge-

ometry. Given the points A = [3, 7], B = [4, 12], C = [9, 2], verify

that the altitudes of the triangle meet at a single point (the ortho-

centre). Find the circumcentre of the triangle and verify that it is

equiquadrance from each of the vertices of the triangle

To solve this, we put the following code into a file called example.py.

from pygeom.field import FiniteField

from pygeom.geometry import red

from pygeom.core import Point

from pygeom.pairs import LineSegment, PointLine, Vertex

Set up the field

f = FiniteField

f.base = 13

geometry = red(f)

Create the points

A = Point(f(3), f(7), geometry)

B = Point(f(4), f(12), geometry)

C = Point(f(9), f(2), geometry)

Create the lines of the triangle

AB = LineSegment(A, B)

AC = LineSegment(A, C)

BC = LineSegment(B, C)

4.6. EXAMPLES 53

Create the altitudes

alt_a = PointLine(A, BC.line).altitude().line

alt_b = PointLine(B, AC.line).altitude().line

alt_c = PointLine(C, AB.line).altitude().line

Calculate the points of intersection of the altitudes

O_ab = Vertex(alt_a, alt_b).point

O_bc = Vertex(alt_b, alt_c).point

O_ca = Vertex(alt_c, alt_a).point

Check that the points are indeed equal

assert O_ab == O_bc == O_ca

print ‘‘Orthocentre:’’, O_ab

Find the circumcentre

C_a = BC.perp_bisector()

C_b = AC.perp_bisector()

C_0 = Vertex(C_a, C_b).point

print ‘‘Circumcentre:’’, C_0

Check the quadrances

Q_a = LineSegment(A, C_0).quadrance()

Q_b = LineSegment(B, C_0).quadrance()

Q_c = LineSegment(C, C_0).quadrance()

assert Q_a == Q_b == Q_c

When run, it gives the following result.

$ python example.py

Orthocentre: [10 (13), 10 (13)]

Circumcentre: [3 (13), 12 (13)]

Circumquadrance: 1 (13)

We have found the orthocentre, circumcentre and circumquadrance as re-

quired. The assert statements have also verified that the perpendicular bi-

sectors meet at a single point and that the circumcentre is equiquadrance from

the three vertices.

This example shows that pygeom can easily be used to perform calculations

in planar universal geometry when attempting to solve specific problems.

54 CHAPTER 4. PYGEOM LIBRARY

Chapter 5

Testing

For a mathematical software library to be of practical value, the user must

trust it to provide correct results. Furthermore it must handle all possible

inputs the user might give it, either in producing a correct result or else

informing the user that their input is invalid. To provide this level of assurance

it is not sufficient for the library developer to simply claim that their software

meets these standards, they must be able to demonstrate it. Furthermore,

the user must be able to reproduce this demonstration when the software is

installed on their own systems.

Such demonstrations generally come in the form of a test suite, which is a

piece of software designed to utilise the library in a systematic way, verifying

the results produced. The pygeom library provides such a test suite, which is

described below. This test suite aims to provide a level of assurance to the

users of the library, however it should be noted that the suite is necessarily

incomplete, in that it does not test every possibly combination of inputs. As

such there may be bugs in the library which are not detected by the test suite.

As the old adage goes, testing can only prove the presence of bugs, not their

absence.

Mathematical software libraries such as pygeom have the nice property that

their inputs and outputs represent mathematical objects. By taking advantage

of the mathematical properties of these objects, it can generally be confirmed

that the software is performing as expected. For example, if we were to con-

struct the foot of an altitude to a line, a test could confirm that the foot did

indeed lie on the original line.

In this chapter we outline some of the techniques used to test pygeom with the

aim of assuring any user that it will perform as expected. The users of the

55

56 CHAPTER 5. TESTING

library are encouraged to inspect and use these tests to independently verify

the correctness of the library.

5.1 Unit Testing

Unit testing1 is a method of testing individual components of a software sys-

tem. The software system is broken down into components, or units, and tests

are written which exercise these units independently from each other. A unit

might be an individual module, class or function. Each unit test will execute

a particular unit and then check to make sure the results are as expected.

Each unit may have multiple unit tests, each checking different aspects of the

result. Furthermore, each unit test may be run multiple times, using different

inputs but checking the same output condition each time.

A benefit of unit testing is that when errors are detected, they can generally

be tracked down easily, since small pieces of code are being run in a relatively

independent manner. This reduces the number of places the developer must

search to find the underlying cause of an error, which leads to faster debugging.

A disadvantage of unit testing is that it will not detect errors which arise as

a result of interaction between different modules. This can be particularly

problematic in very large, tightly coupled software systems, such as a word

processor or operating system. In the case of pygeom , which is a simple,

loosely coupled system, this is not so much of a concern.

5.2 Fuzz Testing

Another form of testing which is used by pygeom is fuzz testing. Fuzz testing

involves calling the library with random input and ensuring that it handles

the data correctly. This allows a wide range of inputs to be tested while

also generating input conditions which might have been difficult to manually

construct or else might have been overlooked by the developer.

A drawback of fuzz testing, compared to manually constructed examples, is

that it cannot use explicit expected output results and must rely on math-

ematical identities and other invariants. For example, if we wanted to test

an add() function, which simply added two variables, we could construct an

explicit example to test it.

1http://en.wikipedia.org/wiki/Unit testing

5.3. COVERAGE TESTING 57

x = 5

y = 10

assert add(x, y) == 15

Using fuzz testing, we can only test known properties such as the commutative

property, e.g.

a = random()

b = random()

assert add(a, b) == add(b, a)

In a mathematical library such as pygeom we have many such identities avail-

able to use and therefore we can effectively make use of fuzz testing.

5.3 Coverage Testing

When testing a software library it is important to know that the entire library

has been tested (or to at least know which parts have not been tested!). If a

particular piece of the library, be it an entire function or a single line, has not

been tested, then the developer cannot be sure that it will work as expected.

Coverage testing is a technique which keeps track of each line of code as it

is executed by the test suite and then provides a report at the end showing

which lines of code were executed and which were not.

Coverage testing provides a useful metric of the extensiveness of a test suite,

however the results must be used with caution. Simply executing every line

of code once is by no means sufficient to claim that the library is fully tested,

as each line must be able to deal with many different input conditions. As

such, complete coverage of the library should be considered a necessary but

not sufficient condition for a test suite to be considered complete.

5.4 pygeom Test Framework

The pygeom library has a test suite which uses a combination of the above

techniques. This test suite is built on top of the Nose test framework, which

is “a unittest-based testing framework for python that makes writing and

running tests easier”2. Running the test suite is done using the nosetest

program and produces the following results:

2http://code.google.com/p/python-nose/

58 CHAPTER 5. TESTING

$ nosetests

..

--

Ran 48 tests in 124.761s

OK

If we edit the library to create an error, such as changing the Conic.centre quadrance()
method to return K+1 instead of K, nosetest will indicate the error as follows.

$ nosetests

....F...

==

FAIL: test_conic.test_fuzz_circle

--

Traceback (most recent call last):

File "/Library/Python/2.5/site-packages/nose-0.10.3-py2.5.egg/nose/case.py", line 182, in runTest

self.test(*self.arg)

File "/Users/timleslie/src/pygeom/tests/test_conic.py", line 116, in test_fuzz_circle

assert new_K == K

AssertionError

--

Ran 48 tests in 121.957s

FAILED (failures=1)

By examining the code in the failing test (test fuzz circle in test conic.py)

we see that the return value of centre quadrance() was not equal to the ex-

pected value. This corresponds nicely with the nature of the artificial bug

and shows how this test framework can help in detecting and tracking down

errors.

5.4.1 Coverage

The Nose test framework supports coverage testing as an additional command

line option. When run with coverage testing enabled, nosetest gives the

following results for the pygeom library.

$ nosetests --with-coverage --cover-erase --cover-package=pygeom

..

Name Stmts Exec Cover Missing

pygeom 0 0 100%

pygeom.core 180 178 98% 27, 33

pygeom.field 209 209 100%

5.5. PYGEOM TEST SUITE 59

pygeom.geometry 28 28 100%

pygeom.pairs 198 198 100%

pygeom.util 96 96 100%

TOTAL 711 709 99%

--

Ran 48 tests in 853.834s

OK

The report shows, for each module in the package, how many executable

statements were found (Stmts), the number of these statements which were

actually executed (Exec), the coverage as a percentage (Cover), and the line

numbers of those lines which were not executed (Missing).

The two lines which do not get executed by the test suite are the bodies of

abstract methods in the Core class and thus cannot be executed by design.

The results thus tell us that the pygeom test suite has effectively complete

coverage. This ensures that the entire library is free from trivial bugs, e.g. lines

of code which would not work correctly for any input. As mentioned above

however, we must consider the tests themselves to gauge the completeness of

the test suite.

5.5 pygeom Test Suite

The pygeom test suite consists of a number of Python modules, each of which

contain a set of test functions. Each test function constitutes a single unit test.

These functions will generally create some test data, perform some operations

on it using the pygeom library and then verify that the result is as expected.

Each of these test modules is described below.

5.5.1 test field.py

This module contains a series of tests for the Field, FiniteField and Rational

classes. Each of the field operations is tested on concrete examples with known

results to ensure that the most trivial calculations give correct numerical re-

sults. Fuzz testing is then used to test the twelve field axioms3 on randomly

3http://mathworld.wolfram.com/FieldAxioms.html

60 CHAPTER 5. TESTING

generated values. This ensures that the implementation does indeed imple-

ment the mathematical objects it claims to.

5.5.2 test rational.py

The test rational.py module adds some extra tests which are specific to

the Rational class. These tests ensure that initialisation of rational values

behaves correctly over a wide range of cases and also that the internal repre-

sentation correctly removes common any common factors.

5.5.3 test core.py

The Point and Line classes are tested by the test core.py module. A range

of initialisation tests are performed to ensure that creating objects behaves

as expected. As well as this, fuzz testing is performed on random points to

ensure that Point objects behave properly as vectors. This requires making

sure that vector addition and scalar multiplication work as expected.

5.5.4 test conic.py

The Conic class is tested separately from the other core objects, as it has a

significantly larger API to cover. The module test conic.py uses fuzz testing

to generate points and lines which in turn are used to create general conics,

parabola, circle, quadrolas and grammolas. The generated conics are then

tested to ensure that they satisfy the respective properties which have been

derived in Chapter 3.

5.5.5 test pairs.py

The test pairs.py module works in much the same way as the test conics.py

module. It uses fuzz testing to generate random points and lines, then com-

bines these into pair objects. These pair objects then have their methods

called, and the returned objects are compared with the expected results from

Chapter 2.

5.6. SUMMARY 61

5.6 Summary

This chapter has outlined the pygeom test suite. These tests should allow the

user to trust that the library will perform correctly in a wide range of situa-

tions. Furthermore, they will serve as useful tool in any future developments

of the library, as the developers will be able to quickly verify that any changes

they make do not break existing functionality.

62 CHAPTER 5. TESTING

Chapter 6

Conclusion

The theories of planar universal geometry provide a bridge between the more

general theories of universal geometry and the specific geometries of chromo-

geometry. In this thesis we have developed a number of new theories related

to lines and conics in planar universal geometry, as well as recasting some

old theories within this new framework. It is hoped that these will provide a

foundation for further investigations in this field.

We have also presented the pygeom library, which allows numerical calculations

to be performed in planar universal geometry. By virtue of the fact that

chromogeometry and rational trigonometry arise as special cases of planar

universal geometry, pygeom is able to do calculations within these regimes.

63

64 CHAPTER 6. CONCLUSION

Bibliography

[1] N. J. Wildberger. Divine Proportions: Rational Trigonometry to Universal

Geometry. Wild Egg, 2005.

[2] N. J. Wildberger. A rational approach to trigonometry. Math Horizans,

November 2008.

[3] N. J. Wildberger. The ancient greeks present: Rational trigonometry,

2008, arXiv:0806.3481.

[4] N. J. Wildberger. Affine and projective universal geometry, 2006,

arXiv:math/0612499.

[5] N. J. Wildberger. One dimensional metrical geometry. Geometriae Dedi-

cata, 128:145–166.

[6] N. J. Wildberger. Chromogeometry. 2008, arXiv:0806.3617.

[7] N. J. Wildberger. Chromogeometry and relativistic conics, 2008,

arXiv:0806.2789.

[8] Henri Cohen. A course in computational algebraic number theory. Springer,

1993.

65

